Name of the Department: PhysicsName of the Course: B.Sc. Prog.-CBCS_CoreName of the Paper: Thermal Physics and Statistical MechanicsSemester: IIIUnique Paper Code: 42224303_OCMedium: EnglishQuestion Paper Set No.: A

Duration: 3 Hours

Max. Marks: 75

Instructions for Candidates

I. Write your Roll No. on the top immediately on receipt of this question paper.

II. All questions carry equal marks. Attempt any four questions in all.

Q.1. State and prove Carnot's theorem. Describe Carnot's reversible heat engine and find an expression for its efficiency. Explain why Carnot's cycle is not a practical possibility.

Q.2. What is Joule-Thomson effect? Obtain thermodynamically an expression for Joule-Thomson coefficient. Explain existence of inversion temperature for a gas obeying Vander Waal's equation.

Q.3. Deduce an expression for the average energy of a Planck's Oscillator and hence derive Planck's formula for spectral distribution of energy in the black-body radiation. Show that the Rayleigh- Jean's formula and Wien's formula are special cases of Planck's formula.

Q.4. Which physical quantity is transported in the phenomena of viscosity? Derive an expression for the viscosity (η) of a gas in terms of mean free path of its molecules. Discuss the effect of pressure and temperature on the coefficient of viscosity.

Q.5. Formulate the first law of the thermodynamics and explain its physical significance. Calculate the external work done when μ moles of an ideal gas undergo expansion (i) isothermally from volume V₁ to V₂ at absolute temperature. (ii) Adiabatically from a temperature T₁ to temperature T₂.

Q.6. Give the experimental verification of Maxwell-Boltzmann's law of distribution of molecular speeds. Using Maxwell-Boltzmann distribution, obtain a relation between the average energy of the particle and its temperature in equilibrium.

Download all NOTES and PAPERS at StudentSuvidha.com